Rational Design of Materials for Energy Production and a Cleaner Future by Dr. M. Veronica Ganduglia-Pirovano

Date:          Wednesday, 23 November 2022 at 3:00 PM (CET)
Topic:         Rational Design of Materials for Energy Production and a Cleaner Future
Speaker:    Dr. M. Veronica Ganduglia-Pirovano
Venue:       Building 330, Institute of Functional Interfaces (IFG), KIT, Campus North, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen or virtually via Zoom

Dr. M. Veronica Ganduglia-Pirovano
KIT International Excellence Fellow (2022)


  • Scientific Researcher, Institute of Catalysis and Petrochemistry of the Spanish Council for Scientific Research (CSIC), Madrid, Spain
  • Research Area: Material Design and Chemistry 
  • Member of the National Academy of Exact, Physical and Natural Sciences Argentina (Academia Nacional de Ciencias Exactas, Físicas y Naturales-ANCEFN) (2020)
  • Other affiliations: Exxon Corporation, Annandale, New Jersey, USA, the Fritz Haber Inst., Max Planck Society, Berlin, the Center for Atomic-scale Materials Physics-DTU, Denmark, the Humboldt University in Berlin 
  • Selected among the 100 successful, inspirational and progressive women in science and engineering Successful Women Ceramics and Glass Scientists and Engineerings: 100 Inspirational Profiles
  • International Excellence Fellow at the Institute of Functional interfaces (IFG), KIT (2022)  

Abstract: Methane (CH4) and carbon dioxide (CO2) are two potent greenhouse gases and their conversion to valuable resources is mandatory to bring us to a greener future. In this talk, I discuss recent results on metal/CeO2 systems which point toward a possible strategy for designing active and stable catalysts that can be employed for methane activation and conversions. The emphasis is here put on theoretical studies in combination with experiments. 

A recording of this talk can be found on YouTube via this link.

Order Fulfillment Design for an Omnichannel World by Associate Professor Dr. Jennifer Pazour

Date:          Tuesday, 25 October 2022 at 5:00 PM (CEST)
Topic:         Order Fulfillment Design for an Omnichannel World
Speaker:    Associate Professor Dr. Jennifer Pazour
Venue:       KIT, Campus South, Gotthard-Franz-Str. 8, Build. 50.38, Selmayr Lecture Hall
                   as well as virtually via Zoom

Associate Professor Dr. Jennifer Pazour
KIT International Excellence Fellow (2022)


  • Associate Professor of Industrial and Systems Engineering, Rensselaer Polytechnic Institute (RPI), Troy, New York
  • Associate Editor of IISE Transactions, Military Operations Research, and OMEGA
  • Research Area: Develop and use mathematical models to guide decision making for logistics and supply chain challenges
  • Recipient of many prestigious research awards, such as: 
    • The Institute of Industrial and Systems Engineering (IISE) Dr. Hamed K. Eldin Outstanding Early Career IE in Academia Award
    • The United States National Science Foundation Faculty Early Career Development (CAREER) Award
    • A Johnson & Johnson Women in STEM2D Scholars Award
    • A US National Academies of Science Gulf Research Program Early-Career Fellowship
    • A Young Investigator Award from the US Office of Naval Research
  • Award-winning teacher, including the Rensselaer Alumni Teaching Award, and the IISE Logistics and Supply Chain Division Teaching Award
  • International Excellence Fellow at Institute for Material Handling and Logistics (IFL), KIT (2022) 

Abstract: Retail and distribution operations are undergoing a vast transformation, thanks to the rapid proliferation of e-commerce, and changing customer expectations for speed, product variety, and omni-channel services. Omni-channel services, such as popular click and collect services like buy online pickup in store, provide customers with a seamless shopping experience whether the customer is shopping online or in a bricks and mortar store. Given these services shift the material handling and logistic efforts that used to be done by shoppers to store resources, this presents a challenge for retailers and an opportunity for the material handling and logistics industry and research communities. In this presentation, an overview of omni-channel material handling challenges and opportunities will be presented, including research on new operational designs, facilities, equipment, methodologies, and business models.

Find more information about her background, projects, and team on Dr. Jennifer Pazour’s webpage.

A recording of this talk can be found on YouTube via this link.

Towards Physical-Conceptual Modeling of Mass, Energy and Information Flows Using Machine Learning Technology by Prof. Dr. Hoshin V. Gupta

Date:          Thursday, 29 September 2022 at 5:00 PM (CEST)
Topic:         Towards Physical-Conceptual Modeling of Mass, Energy and Information Flows Using Machine Learning Technology
Speaker:    Prof. Dr. Hoshin V. Gupta
Venue:       KIT Campus South, Build. 10.81, Room 305, Otto-Ammann-Platz 1, 76131 Karlsruhe 
                    as well as virtually via Zoom

Prof. Dr. Hoshin V. Gupta
KIT International Excellence Fellow (2022)


  • Internationally recognized leader in Systems Methods for Reconciling Models with Data
  • Regents Professor, Theory and Applications of System Methods to Hydrology at the Department of Hydrology & Atmospheric Sciences, University of Arizona, United States
  • Research Field: System Methods, Hydrological Models
  • Recipient of many prestigious awards and recognitions such as:
    • John Dalton Medal of the European Geosciences Union for distinguished research in Hydrology reviewed as an Earth science (2014)
    • Clarivate "Highly Cited Researchers List" (2017-2018)
    • Fellow of the American Meteorological Society (2019)
  • International Excellence Fellow at Institute for Water and River Basin Management - Hydrology (IWG-HYD), KIT (2022)

Abstract: The success of any Machine Learning strategy depends on the conceptual and algorithmic Representation that is selected for Encoding and Processing Information. Further, the chosen encoding/representation completely determines the questions that can be asked, analyses that can be performed, and the answers that can be obtained. Ultimately, the effectiveness and efficiency of any ML strategy depends on Information Theoretic choices related to what Information we chose to encode (and store), the form in which we choose to encode that Information, and the method by which that encoded Information is processed. My view is that by rooting the development of Machine Learning/Artificial Intelligence and Physics-Based Modeling in the fundamental perspectives and language of Information Theory, we can hope to achieve the most rapid progress in the Domain Sciences. While my thoughts may perhaps be speculative, I do not think I am alone in thinking this way, as evidenced by ML literature related to Information Bottleneck theory, and also to the fundamentals of Computational Science.

A recording of this talk can be found on YouTube via this link.

Multidisciplinary Design and Analysis of Multifunctional Lightweight Systems by Prof. Dr. Kamran Behdinan

Date:          Thursday, 14 July 2022 at 5:00 PM (CEST)
Topic:         Multidisciplinary Design and Analysis of Multifunctional Lightweight Systems
Speaker:    Prof. Dr. Kamran Behdinan
Venue:       Virtual (Zoom)

Prof. Dr. Kamran Behdinan
KIT International Excellence Fellow (2022)


  • Professor of Mechanical Engineering at the Department of Mechanical and Industrial Engineering, University of Toronto, Canada
  • Chair of Syllabi and Board member of the Canadian Engineering Qualification Board – Engineers Canada
  • Recipient of many prestigious awards and recognitions such as the Research Fellow of Pratt and Whitney Canada and Fellows of the CSME, ASME, the Canadian Academy of Engineering, EIC, AAAS, as well as Associate Fellow of AIAA
  • Holder of the title Principal Investigator from the Connaught Global Challenge Award for his outstanding contributions to Advanced Technology for Energy Harvesting in Biomedical Device Applications (2021)
  • Holder of the ASME Ruth and Joel Spira Outstanding Design Educator Award (2022)
  • International Excellence Fellow at Institute of Product Engineering (IPEK), KIT (2022)

Abstract: In industrial product development, the importance of design flexibility, individualization and load-compliant design of component geometry is steadily increasing due to increasing emission regulations. These design requirements can be achieved by implementing advanced manufacturing (AM) processes, such as additive manufacturing, to produce near-net-shape geometries. Given the versatility of AM, there are still numerous pathways which are unexplored to improve the overall outcome of the process. Integrating Topology Optimization (TO) and Health Monitoring (HM) methodologies into the Additive Manufacturing Process, one can easily give shape to Advanced, Lightweight, Structures which would vastly improvise current trends and methods. In this presentation, advanced techniques in design and analysis of lightweight structures will be discussed. It will summarize major research projects conducted in intelligent manufacturing and lightweight structures at the UofT ARL-MLS.

A recording of this talk can be found on YouTube via this link.


Unveiling Nature's Secrets - The Future of Particle Physics by Prof. Dr. Markus Klute

Date:          Thursday, 23 June 2022 at 4:00 PM (CEST)
Topic:         Unveiling Nature's Secrets - The Future of Particle Physics
Speaker:    Prof. Dr. Markus Klute
Venue:        “Senate Hall”, Engelbert-Arnold Str. 2, 76131 Karlsruhe (building 11.30), Campus South

Prof. Dr. Markus Klute


  • Professor of Physics at the Massachusetts Institute of Technology (MIT), USA; Research Area: Particle Physics Experiment
  • Fellow of the American Physical Society (2019) and holder of the Sloan Research Fellowship (2011)
  • Holder of the Humboldt Professorship Award (2022)
  • Expert reviewer for the National Science Foundation
  • Member of the Scientific Advisory Board in the PRISMA+ Cluster of Excellence at the University of Mainz.
  • He and his team played a central role in the Compact Muon Solenoid (CMS) experiment during the discovery of the Higgs particle at the LHC in 2012

This talk was organised within the framework of the Humboldt-Tag 2022. More information about Humboldt-Tag 2022 here.

Design of Novel Architectured Materials by Prof. Dr. Yuri Estrin

Date:          Wednesday, 25 May, 2022 at 5:00 PM (CEST)
Topic:         Design of Novel Architectured Materials
Speaker:    Prof. Dr. Yuri Estrin
Venue:       Virtual (Zoom)

Prof. Dr. Yuri Estrin
KIT International Excellence Fellow (2022)


  • Professor of the Department of Materials Science and Engineering, Monash University, Melbourne, Australia
  • One of the most cited scientists in the field of physical metallurgy and materials modeling, especially in connection with dislocations
  • Author of more than 500 publications on nanomaterials, light alloys, alloy design, thin films, hybrid materials and multimaterials, and design of novel materials based on geometric principles
  • Holder of Humboldt Prizes (1999 and 2012) & Helmholtz International Fellow Award from the Helmholtz Association of German Research Centers
  • International Excellence Fellow at Institute of Engineering Mechanics - Continuum Mechanics (ITM-KM), KIT (2022)

Abstract: Design of new materials based on their inner architecture, rather than their atomic or phase composition, is an emerging trend in materials engineering. In this talk, several promising areas of research into architectured materials will be highlighted. The classes of materials to be presented are based on meso scale designs inspired by animate and inanimate Nature, but also on structures born in the minds of scientists and engineers. The guiding principles governing the design of the emerging material architectures (such as topological interlocking, lithomimetics, lattice structure designs, etc.) will be discussed along with their explored and anticipated properties. An outlook on possible future developments and applications will be provided.

Seeing the Invisible with Quantum Ghosts by Prof. Dr. Andrew Forbes

Date:          Thursday, 28 April, 2022 at 5:00 PM (CEST)
Topic:         Seeing the Invisible with Quantum Ghosts
Speaker:    Prof. Dr. Andrew Forbes
Venue:       Virtual (Zoom)

Prof. Dr. Andrew Forbes 


  • Holder of Georg Forster Prize from Alexander von Humboldt Foundation for his outstanding Contributions to Photonics (2022)
  • Distinguished Full Professor within the School of Physics at the University Witwatersrand (South Africa)
  • Research Field: Quantum Optics
  • Elected member of the Academy of Science of South Africa
  • Editor-in-chief of the UK’s Journal of Optics
  • NSTF national award for his contributions to photonics in South Africa
  • SAIP Gold Medal, the highest award for physics in South Africa 

Abstract: Conventional imaging, as you do with your smartphone, is achieved with ubiquitous optical elements (such as lenses) and has remained more or less unchanged for centuries. In his talk, Prof. Forbes outlines how spooky quantum light allows us to break the rules of traditional imaging systems, including imaging without interacting with the object, high resolution photos with low resolution detectors, and making the invisible visible.

A recording of this talk can be found on YouTube via this link.

Shifting the Narratives Around Women STEMpreneurs by Dr. Katherina Kuschel

Date:           Thursday, 3 March 2022 at 5:00 PM (CET)
Topic:          Shifting the Narratives Around Women STEMpreneurs
Speaker:     Dr. Katherina Kuschel
Venue:        Virtual (Zoom)

Dr. Katherina Kuschel
KIT International Excellence Fellow (2021)


More Information about the speaker:

  • Dr. Katherina Kuschel researches women founders of technology ventures at CENTRUM Graduate Business School and Pontificia Universidad Católica del Perú.
  • Funded by the DAAD and the KIT International Excellence Fellowship (2021), Kuschel is exploring soft-landing programs and expatpreneurs at EnTechnon, KIT.
  • Kuschel leads a research group on work-life issues among entrepreneurs, participated as guest editor at the International Entrepreneurship and Management Journal on Women Entrepreneurship within STEM fields and a Routledge edited book entitled The Wellbeing of Women in Entrepreneurship.

Abstract: A shift in paradigm on how we approach the role of women is also taking place in science. This talk explains the characteristics and dynamics around women entrepreneurs in STEM fields and proposes a new perspective to measure their success.

A recording of this talk can be found on YouTube via this link


Micro-scale Magnetic Resonance as a Quantitative Tool for Biology by Prof. Dr. Marcel Utz

Date:         Thursday, 27 January 2022 at 6:00 PM CET
Topic:        Micro-scale Magnetic Resonance as a Quantitative Tool for Biology
Speaker:   Prof. Dr. Marcel Utz
Venue:      Virtual (Zoom)

Prof. Dr. Marcel Utz


  • Professor of Magnetic Resonance, Microfluidics, and Complex Materials, Department of Chemistry at University of Southampton, UK
  • Research Topic: Massively Parallel Microfluidic NMR–Towards Metabolomic Cell and Spheroid Cultures (MPM-NMR)
  • KIT International Excellence Fellow 2021/2022, hosted by Prof. Dr. Jan Korvink, Institute of Microstructure Technology (IMT)

A recording of this talk can be found on YouTube via this link


Moving from "Human as Problem" to "Human as Solution" in Cyber Security by Dr. Karen Renaud

Date:         Thursday, 25 November 2021 at 6:00 PM CET
Topic:        Moving from "Human as Problem" to "Human as Solution" in Cyber Security
Speaker:   Dr. Karen Renaud
Venue:      Virtual (Zoom)

Dr. Karen Renaud 


The cyber security industry treats all humans in the system as if they might well be malicious actors, and the solutions are designed to prevent insecure behaviors. This viewpoint demonstrates a “Human-as-Problem” mindset. It seems appropriate to take a look at the way cybersecurity is conceptualized and to consider whether there is a need for a mindset change. Dr. Renaud is proposing a paradigm change: "Human as Solution". This new mindset rests on recognition of the fact that the problem is actually the high complexity, interconnectedness and emergent qualities of socio-technical systems, and not a single component of the socio-technical system. The new mindset acknowledges the well-intentioned human's ability to be an important contributor to organizational cybersecurity and their potential to be “part of the solution" rather than “the problem". The focus is on enhancing factors that contribute to positive outcomes and on building resilience rather than sheer resistance.

Find more information about her background and current projects on Dr. Karen Renaud's website

A recording of this talk can be found on YouTube via this link


Materials Development for the Next Generation of Solar Cells by Dr. David Jones

Date:          Thursday, 28 October 2021 at 6:00 PM CET
Topic:         Materials Development for the Next Generation of Solar Cells
Speaker:    Dr. David Jones
Venue:       KIT Campus South, Engesserstraße 13, Building 30.34, Room 017

Dr. David Jones


  • Research Group Leader / Senior Lecturer at School of Chemistry, University of Melbourne, Australia
  • Leader in developing advanced organic semiconductor materials for optoelectronic devices
  • KIT International Excellence Fellow Sep 2021 / Jan 2022
  • Host Institute at KIT: Material Research Center for Energy Systems (MZE)

World energy demand is expected to double by 2050, reaching fifteen terawatts (15 TW), however, to supply this demand without increasing carbon dioxide emission remains a challenge. The embedded energy in silicon solar cells, expressed as an energy payback period, remains high at around 1.4 years, while the lifetime emitted carbon dioxide of silicon solar cells remains at 40-100 gCO2.e/kWh depending on installation location. Next generation solar cells, like organic solar cells, have reported energy payback periods of months, if not weeks, with lifetime emitted carbon dioxide levels of 10 gCO2.e/kWh offering significant environmental advantages. In this talk I will discuss recent materials development from new p-type organic semiconductors to the use of quantum coupled process to improved solar cell efficiency.

A recording of this talk can be found on YouTube via this link


Virtual Experiments? Why and How! by Prof. Dr. Antonina Pirrotta

Date:          Thursday, 22 July 2021 at 6:00 PM CET
Topic:         Virtual Experiments? Why and How!
Speaker:    Prof. Dr. Antonina Pirrotta
Venue:       Virtual (Zoom)

Prof. Dr. Antonina Pirrotta


  • Professor of Civil Engineering at Università degli Studi di Palermo, Italy  
  • International Excellence Fellow at Institute of Engineering Mechanics (ITM), KIT 2021
  • First European woman to be awarded the American Society of Civil Engineers EMI Fellowship

A recording of this talk can be found on YouTube via this link


Exploring the Limits of Metals Strength by Prof. Dr. Eugen Rabkin

Date:           Thursday, 23 September 2021 at 5:00 PM CET
Topic:          Exploring the Limits of Metals Strength
Speaker:     Prof. Dr. Eugen Rabkin
Venue:        KIT Campus North, Building 681, Room 214

Prof. Dr. Eugen Rabkin


  • Professor, Trudy and Norman Louis Chair in Engineering, Department of Materials Science and Engineering at the Technion - Israel Institute of Technology, Haifa, Israel
  • Research Topic: Mechanisms of Dislocations Nucleation in Metal Nanoparticles 
  • International Excellence Fellow of KIT (August-September 2021)
  • Host Institute: IAM - Materials- and Biomechanics

Rabkin presented his insights on mechanical strength of elemental metals and alloys. More specifically, his group has studied the uniaxial compression behavior of micro- and nanoparticles of several elemental metals (Au, Ni, Ag, Mo, Pt) and alloys (Ni-Fe, Ni-Co, Au-Ag). The particles were obtained by solid state dewetting of thin metal films and multilayers deposited on hard substrates. The record-breaking compression strength of the particles (i.e. 46 GPa for Mo) and counterintuitive solid solution weakening were observed and correlated with the nucleation of dislocations – linear defects responsible for metals plasticity. The observed values of strength put metals on par with the strongest materials such as diamond or carbon nanotubes.


Rogue Waves in Nature and integrable Models by Prof. Dr. Dmitry Pelinovsky

Date:           Thursday, 24 June 2021 at 6:00 PM CET
Topic:          Rogue Waves in Nature and Integrable Models
Speaker:     Prof. Dr. Dmitry Pelinovsky
Venue:         Virtual (Zoom)

Prof. Dr. Dmitry Pelinovsky


  • Professor of Mathematics, McMaster University, Hamilton, Canada
  • Field of expertise: analysis, differential equations, mathematical modeling, theoretical physics
  • Humboldt Research Award, Alexander von Humboldt Foundation (KIT, Germany)
A recording of this talk can be found on YouTube via this link


Fighting Cancer with Light by Prof. Dr. Igor Komarov

Date:           Thursday, May 20, 2021 at 6:00 PM CET 
Topic:          Fighting cancer with light-emerging technologies
Speaker:     Prof. Dr. Igor Komarov
Venue:         Virtual (Zoom)

Prof. Dr. Igor Komarov


  • Head of Supramolecular Chemistry Chair at the Institute of High Technologies, Taras Shevchenko National University of Kyiv, Ukraine
  • Scientific Advisor Lumobiotics GmbH, Germany
  • Amongst the top-100 most cited Ukrainian scientists, and one of the Ukrainian top-5 experts in the area of organic chemistry
  • Cutting edge research into peptidomimetics, whose biological activity can be controlled by light
  • One of the first International Excellence Fellows of KIT (2021), holder of the Georg Forster Research Award of the Alexander von Humboldt Foundation (2015), and an Alexander von Humboldt Research Fellow (2000-2001).

A recording of this talk can be found on YouTube via this link